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OOMPR7SSIBLE FLOWS AROUND GLOSED PROFILAS

By Lipman Bers
SUMMARY", T

It'1s shown that under cértain:conditions a two-dimen-
slonal  subsonic compréssible flow around &n airfoil profils
can-be derived from an incompressible flow arotnd ancther -
profile,- The connection'between these twd "conjugate flows" -
is given by a simple conformal traneformatlon of tha resPec—-
tive hodog;aph planes. : o

The transformation of a given incompressible flow into
a compressible flow around a slightly distorted profile ras- -
duces to the integratlon of a linear vpartial differential.
equatlon in the physical plane of %thé incompressible flow.

Ax approximate solution of this equation is indicated.~ Fur~
ther research is necessary in order to extend the’ applica—j

bility of the method and in order to reduce the computational
work involved in the rlgorous solution to an acceptable min-
imum, o . Do ; v

The transformation of an incompressible flow into a
compres&sible one: can be carried out complefely and in a’
closed form under the assumnption of the linsarized pressures
denslty relation, The fipal formulas represent an extension
of thé result of Ton Karman and Tegien, to which they reduce.
in the special case of a flow without circulation. It is -
shown that cssentislly all compr9331ble flows can- be obtained
bv this method - .
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INTRODUGTION - =% - -

The high level which has been'gttained by the theory of
two-dimensional incompressible flows 1s due to the fact that
this theory 1s based upon a highly developed mathematical
theory, that of mnalytic functlorne of:a complex variable,
Every analytic function ylelds a.possible flow pattern and
vice versa, - Furthermore, the use "of transformaticns per-
formed by means of analytic functions (conformal transforma-
tions) permits the derivation of all possible flcws from a
few simple standard forms, It seems obvious that the theory
of two-dimensional compressible flows (at least as far as
subsonic flows are concerned) reguires the development of a
gimilar mathematical background.

The theory of slgma-monogenic .functions {(references 1
and 2) 1s an atbemnt to study. a class of complex functiocns
the role of which in gas dvnamicg is. conm barable to that of
anelytic functionsg in the theory of incompressible flows.
Gelbart (reference 3) has outlined the application of this
nethod to the study of commressible flows. Further applica—
tions depend upon the investigation of singularities of
sigma~monosenic. functions. (Such an investigation is being
conducted. ) Reference also 1s made 0 a recent report by
Garrick and Kaplan (reference-4). - The investigation of
transformatione which for the case of compressible flows take
the'place of conformal transformations is the main theoreti-
cal aim of the present revort. : .

.‘-ne fol]oglng remarks nay 1ndicate in which way such
transformations enter into the study of compressible flows
around airfoil profiles.

The differential eguations governing the steady two-
dimensional potential flow of a 'compressidle fluid are non-
linear and theresfors . difflcult ‘4o .treat as far as becth the-
oretical considerations and numericsdl computations are con—
cerned, -Molenbroek. (referenee 5). and Tchaplyglin (reference
6) have .shown that the eonations become linear in the hodo-
graph plane, There exist various methods of cbtalning solu-
tions of these hodograpvh equaticns, in particular of obtaln-
ing solutions which in & certain sense correspond to given
solutions of the Cauchy-Riemann equations - that is, to given
incompresgsible flows. Some of these methods are: separatlion
of variables (so successfully used by Tchaplygin in solving

.
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jet problems), the method of integral operators (Bergman,
reference ¥), the method of sigma.-monogenic functions (Bers
and Gelbart, reference 1), and an approximate method of
Temple and Yarwood . (reference 8). TFurthermors, by modifying
the pressure~density relation, the hodograph equations can

be made to coinclde with the Cauchy-Riemann sgquations, as is"
done by Tchaplygin (reference 6), Busemann (reference 9),
Demtchonko (reference 10), ang, in & morse rational way, by
Von Kérman and Tslen (roferencds 11 and:12). . ”

However, the'real difficulty-lies not only -in obbtaining
a solutlon but in obtaining the Yright" sgolution - that is,
one wiilch leads to & flow of a desired type in the physical
plane, for example, to a flow around a é¢losed profile. This
difficulty ie illustrated by the fact that even for the case
when the hodograph equations’ are simply the Cauchy-Riemann
squations, the computation of flows arouwnd closed profiles
hasg until now been carried out only for a special case (flows™
without circulation)

Tnerefore the study of the flow\in the hpdosraph plape
must be sunplemented by the investigatlon of the mapping of
the physical plane into the hodograph plene mand of possible
transformations of incompressible flows arcund closed pro-

files into cormpressilble.flows of the same bt¥pe. - The present I

report is an attempt in this direction.

The methdds .outlingd .in this. repdrt ere at present re-
stricted to flows which are sverywhere subsonic. :Flows of
mixed type (subsonic main flow with locally supersonic re-—
gions) are of more interest from the theoretical as'well =ze
from the practical viewpoint. It is thought, however, that
the solution of the problem of entirely subsonle flows is a
necessary prerequisgite for:.s succesgful theoretical treatment
of the much more difficult problem of mixed ‘1ows.

This investigation, carried out at Brown University,
was sponsored by and conducted with the. financlal assisdtance
of the Natioral Advisory Committee for Aeronautics. The
auvthor 1s-indebted %o Mr, :'J.-B, Diaz far valuable assistance.
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SYMBOLS

speed of sound

line element in the z-plane; line slement of the
profile P : '

non~-Zuclidean length of ds

line element in the {-plane; line element of the
profile i1 - T -

donain exterior to the profile P
domain exterior to the profile [
exponential funection of ( ) =1Q(>

complex potentlial of an incompressible fleow in the
{-plane, normalized so that G!'(®) = 1

hodograph of a’ compressible flow in the z-plane

distorted hodograph of a2 compressible flow in the
z-plane " :

imaginary unit;: éubscripﬁ;referring to an incompross—~
ible flow : ;

imaginary part of ( )

bound for the'ra%io-of;max¢mal speed to stream speed
in tho conjugateé 1gcomprgssible flow

Each number

stream Mach number‘“

modulus of the corréspoﬁdence between two flows
gubscript referring to the state of fluid at rest

a function £ such that |Jf/R}~~>0 as BR—>R,;, R,
being somes specified 1limit
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0(R)

X, Y

s function f such that [£f/R] remains bounded as
. B—>> Ry, R, Dbeing some specified 1limit

pressure

profile in the z~plane
speed

digstorted spesd

speed of an incompressible flow

speed of & fictitious compressible fiow in the g—plane
positive constant

radius of curvature of the profile P
radius of curvature of the profile [

reai part of ( )

coefficlient of the .eymmetrized hodograph equatioﬁs
components of the ve}ocity

components of thé-distorted velocity

Cartesian coordinates in the z-planse

Cartesian coordinates in the Z-plane

z = X +.1y complex variable in the physical plane of the

[
it

e
]

compressible flow

X + 1Y auxiliary complex variable

exponent in the polytropic relatlon

¢ + 1N complex variable in the plane of the incompress-

ible flow

angle between the velocity vector of the compressible
flow and the =x-axis
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"angle between the veloc1ty vector of the incompress-

&g

ible flow and the f-axis
logarithm of the distorted spesd
value of the distorted sveed mt infinity for Y = -1
Cartesian coordinates in the {~plane
profile in the {-plane
density

density of the fictitious compressidle. flow in the
~plane

velocity potential

angle betwéen & line element ds and a streamline
stream function

complex potential of the conjugéte'incbmpressible flow

complex pétentiél_of an incompreseible flow around
the circle [Z] = R

the point infinity; subscript referring to the state
of the fluid at 1nfinity

complex conjugate of { )
absolute value of ( )

The units are chosen so that jo' (bt;gpétioﬂ density)

(speed of sound at & stegnation point) are both

equgl to unity.
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. ANALYSIS

I. GENERAL CONCEPTS
Fundamental Relatlons
It will be assumed that in & compressible fluid the

pressure p 1is a given Ilncreasing function of the denslity p.
The velocity of sound .2 .is given by

o
Q

]
£l

If the flow is irrotatlonal it follows from.Bernoulli's

equation ..
+ JP
. Po .

that the density is & glven function of the speed gq. Since
the preceding equation can be written in the form

_' 1,‘3

q dg + aZ®

o5
]
O

the Mach numbe:r M = é/a is given by the relation

Bo=1, po=1° " )

(the subscript o 'referring to the state of thé fluid at
rest). This is equivalent to the introduction of dimension~
less variables a/eg, . p[po.: Che -
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The pressure—density relation used in gas dynamics is
of the form - .

p = A + Bp" (2)

This relation includes the case of an isothermal flow, where

'Y.=l. (3)

and that of an adisbatic flow with
1< Y< 1,66 (4)

(The standard value of Y for air is 1.405.) The value

Y = 2 .corresponds to the analogy between a two~dimensional
gas flow and a flow of ‘water in an opén channel, . (Cf., for
instance, Von Karman, reference 12.) In the foregoing cases

A =0, B = p¢
The differential equations of a potential gas flow are con-

siderably simplified by introducing the linesrized pressure-
volume relatlion with

v=l1 (s
and
. 3 - 2 .z
A=mp, + %o Poo? B = "8 P

.

where the subscript o refers to the state of the fluld at
infinity, and a&., p,, B, .have been determined according to
the actual pressure~density relation (with A = 0, B = p,,

¥ > 1), Using thls relation amounts to replacing the curve
giving the actual pressure-density relation in the (1/p, p)=-
plane by its tangent at the point (1/p., p,). The linearized
pressure~density relation has been introduced by Von Karman
and Teien (references .11 and 13) (and formerly in a less gen-
eral form by Tchaplygin (reference 6), Demtchenko (reference
10), and .Buseman (reference 9)

The relstions between p, M, and q .obtained from .
(2) depend only upon ¥ (and not upon 4 and B}, Far V=1

o
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p = ".6“‘1;/-2 - (6)
M=gq (?)
f‘Or 'Y # 1 ) s R
o = (1 LY -1 ’éa-)l/("/—-l) (8)
2
i L. .3 -
R P (9)
. S ¥ oL -
l -— q_a
2
g0 that for Y = -1 e
1 + q_‘3
__3. . _ t _. .
M® = 4% (11)
. T
and
P2 = 1 - M3 (12)

g In figure I, p 1is plotted as a functlon of q (for
'Y = ~ll 1’ 1-405). ‘...' '-_‘ --..._' ' ot '_

b

For ¥ = -1, the flow 1s always subsonic. For Y £ 1,
the flow is subsonic as long ase

v + 1

It will be convenieﬁt‘to'uéejthe distorted speed q*
(first introduced by Busemann (reference 9))

: L @& T ' )

Co Y 2 = .

o em LA s
a
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g% = 1 for M =1 (15)

(18)

for Y > 1
Y1 |3

I L B RS G DY A G I S SRV N ol W vy (17)
VA TETER I Y R YIS A

and for Y = 1

q* =

q* = — : B (18)

(In fig. 2 q and g* are plotted as functions of M for
Y = 1.405.) ‘ )
For an incompressibie flﬁw p 1is constant, ¥ = 0,

and g¢g¥ = q.

Equatlions of Motion
The =x and y components of the dimensionless velocity

of a two-dimensional potential ésteady gas flow, u and v,.
satisfy the condition of irrotationality Co o

l
t
l
1

o
< =
g
W
|
o

and the continulty equation .

3(pu) . .38(pv) _. o
3dx - Ody :

These equations imply the exigtence of a velocity potential
p(x,y) and of a stream function W(x,y) so that
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- Ox oy
and . -
= - ég{ ‘ u = _aj[ (20)
| pPvY = = ax'l'p_, dy - .
It follows tHat  « - o ;f;:.ﬁ' '
S _ 13w
d3x p dY
o (21)
Sp 13V
oy p o

The elimination of either ¥ o oor’

leads~to the second-
order equ&tlons Lt " -

8

3 (o3 ;B ¢, Y

x (p 5x/ 3y <p ay> =0 (22)
S (Lo, 8 l.JQ =
ox pax +a <p 3y (23)

The fundamental equatlons (21) to (23) are-of a purely kine-
matic nature and hold independently of ‘the..equation of state.
If the density p is congldered ae a given function of

space (p = p(x,y)), the equations (22) are linear.and always

of the elliptlc tvpe, no nmatter whether the flgw is subsonlc
or supersonic. :

However, the important case 1ls that in which the denslty
is a given function of pressure and therefore also a given
function of the magnitude of the (dimensionless) velocity

% + v2, (CFf. precedin sec.) In this.case equations B
21) to (23) are non-linear %more precisely: quasi-linear

The velocity distribution in a given flow 1s uniquely

determined by the boundary cdnditions and by the functional
relation
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- _ Sen N8 a
p = £(q), q—/(%f)} + -g-ﬁ;

Thie remark justifies the use of the relation Y = -1 for
subsonic flows of not too high Mach number. For, replacing
the actual value of Y by -1 changes the functlon p = f(q)
(and the differential equation for ), gq < 1, only :
slightly. (Of., fig. 1.) PFrom the equations given in the
preceding section, 1t follows that the change of p 1is of
the order of magnitude

Molenbroek (reference 5) and Téhaplygin (reference 6)
showed that linear equations can be obtalned by consldering
¢ and VY as functlons of a and B8, where g 1s the
angle between the velocity vector and the x-axis:

B = (tan~*) X (24)
t

~The équations take the form

% - 4 9V
; °8 P2 (25)
O . . 1 (1 . u2)3¥
d¢q pa o6 '

-

These equations can be brought to a symmetric form by replac-
ing the independent variabdle gq by

A = log q*

q* being the distorted sveed. By virtue of (14), (25) can be
written 1n the fornm

dp _ . 2
36 S
(26) .
clo} = 0 oV .
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with

T.;=.—~———--. . S . (27)

T =1 - g2 e° (28)

For the polytropic case (Y >:1) -

o : <i-_-'v--+' 1 -q-s>%
T = 2 :
(2 - g2 o O

(29)

For the case of the linearized equation of state (Y = -1)

T =3 - (30)
and equations (26) are Cauchy-Riemann equafion§} .In figure 2,
T 4is plotted as a function of the local Mach number M (for
Y = 1,405). It should be-noted that- T 1is a known function

of ¢ and therefore also of g*:

The main advantage of the symmetric form (26) consists
in the fact that the symmetric equations are invariant under
conformal transformation of the €, plane: If new irde~
pendent variables ¢ and T are introduced by sebtting

£ + in = F(g + iA)

F Ybeing an analytic function, then

30 _ oy A
3t ~ T om

- (31)
M 3t |
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v = 2{q [or &.m]}

.

In fact, (26) can be written in the form

with

dp 3t , dp an _ ., foy 3E By M)
3¢ 36 © ¥n 238 St oA n oA

o3, B, (oL, 2
3t dN  3m OA |9t 28 n 98

Eliminating the derivatives of € -and TN Dby means of the
Cauchy~Riemann equations ' Co

yields ~(31).

_ In particular, the distorted velqcity_mayibe defined as
follows: © - c

wk - fve = oM18 = qre~1® _— (32)
Then - |
KT R, T\ A
on* Jv¥ . : -
: > (33)
So oopo 3w - ]
dv* ou* »
Since T isg a given function of u%*?® + v*8 = q*8, the sec-

ond-order equations odbtained from (33) are
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A¢-2L<u*_ai+v*'aﬂ_ = 0
Qu * Jv*

where

it

A = (3%/ou*®) + (3%/3v*2) and  T' = 4T/dq*?

Distorted'Hodograﬁh of a Flow around a Profile

Only the following types of flow will be considered in
this paper. The flow covers the domain exterior to a pro-
file P (domain E(P)). At infinity the flow approaches a
uniform flow in the positlive x-direction, so that

lim =~ w=gq_50,  1lim v =0 (3aY
L e T £ e L

The flow is everywhere subsonic (i < 1). The profile P is

a streamline of the flow; P 1s a piecewiss analytic curve
possessing at most two sharv edges. If there are sharp edges,
the Kutta—~Joukowskl condition is satisfied. There are exactly
two stagnation points, both situated on P. A uniform flow

u = constant, v ='0 is excluded. (For the ‘sake of mathemat-
ical discussion it is convenient %6 admit as "profiles" P
curves which intersect théemselves in a finite number of
points. The exterior E(P) is then a partly multiply cov-
ered Riemann surface.)

Incompressible flows considered will be subject to the
same restrictions, except that the edges need not be sharp,

The transformation
uw = ul{x,y), v = v(x,¥) (35)
takes EB(P) into a domain E of the (u,-v)~plane; HE (the

hodograph of the flow) is,in general,multiply covered. The
transformation
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*
u* = 9.4 = g¥ . cos §, V¢ = ﬂi.v = q* sin § (36)
q . t- , . N " ) q .

takes H(P) into a domain H* of the (u*,-v*)-plane. This
domain will be¢ dernoted "as ‘thé - distorted Hodograph of the flow
(q* and -8 are the polar coordinates in the (u*,—v*)~ plane/.
(cf. fig. 3, (a), (v), (e).

It is known that in the case of an ingcompressible fluid
the mapping of the flow into its hodograph is conformal., It
will be shown that the mapping of E(P) into H* can be con-
sidered as conformal if angles and distances in E(P) are
measured by. means of a certain Rliemannian metric generated by
the flow,

“Tranéformations'Gonformal with Respect to & Given Flow

Given a subsonic compressible flow covering a domain D
of the (x,y)-plane, ILet ds = {(dx, dy) be an infinl:tesimal
line element gituated at a polnt. =x,y of D, ‘M the valve
of the Mach number at this voint, and ¥ +the arngle between
ds and the streamline passing through x,y. The non-
Euclidean length of the lins eslement ds shall be defined as

as = asy/1 - M® 8in® x (37)

Let. &« be the angle between the line element ds and
'the x—axig. . Blnce. X = *(8 -« &) and d4x = de cos a,

dy = ds sin o, it is easily seen that (37) can be written
in the form - - . . "

ias® = e ax® + 2f ax dy + g dye‘ - (38)
whgre_ | | )
e = 1 - M® gin® 9
. f' =¥ 81n B ccs'6 ¥ (39)
1 a-MBicos?-e'

®
t

.

Thue (37) is a Rlemann mesric.
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The non~Buclidean angle A between two line elemsnts
ds = (dx, dy), 6&s = (8%, 8y).  situated at the same point
Z,¥y 1s defined by v

cos 4 = e dx 86x + £(dx 8y + dy 8x) + g 4y 8y
a8 88§

865 ©being the non-Buclidean length of &s.

A transformation
¢ E(x y) 'ﬂ'= n(x,y) (40)

of D into a (simply or multiply covered} domain A of the
(€,M)-plane will be called conformal with respect to tke flow
if it preserves the pense of Trotation and takes each non-
buclidean angle 4 (in the {x,y)-plane) into the FBuclidean
angle . 4n equivalent definition is the following. The
transformatlon %40) is conformal with respect to the flow if
it preserves the sense of rotation and if the ratio

do
as

A=

where dB8 1is the non-Euclidean length of a line element ds
in the (x,y)-plane and 4o, the Buclidean length of its
image in the (§, n)~p1ane depends only upon the position (but
not upon the airect*on) of ds., The symbol A 1is called the
locegl factor of magnification.

If D ig mapped conformally with respect Ho the flow
into A, and A is mapped conformally (in tke ordinary sense)
into A', the resulting mapping 6f° D into A' is conformal
with respect to flow. Conversely, if D is mapped conform-
ally with respect to the flow into both A and A', the re-
sulting mapping of A into Af "is conformal in the ordi-
nary sense,

Any trensformation {40) of E(P) 4into the (f,N)-plane
1ls conformal with respect to the flow if the potential
function ¢ and the stream function  cornsidered as funcw-
tiong of ¢ and N satisfy the differential equations (31).

: This follows fronm 1emma 1 proved in the appendix bv set—
ting A = 1/p, B = T.
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If the foregoing result is used and it 1s noted that o
and ¢ satlsfy equations (33), the following important theo-
rem is seen to be true: :

The mepping of the exterior: E{P) of a profils P into
the digstorted hodograph of a subsonic compresgidble flow
around P is conformal with resmect to this flow.,

Mapping of a Compreseible Flow into a Domain
Exterlor to an Arbitrary Profils

The distorted hodograph of a flow around an airfoil 1s
a slmply connected Riemann surface bounded By a closed curve
(the image of P). By a known theorem of function theory, 1t
1s possitle to map H* conformally into an arbitrary simply
connected domaln, Therefore, 1t is posgsible to map B(P
conformally with respect to the flow into the domain. Z(M) of
the (£,N)-plane, exteridor to a given .profile (!, The mapping
can be chosen so that the point £ + iT = o corresponds to !
the point =x + 1y = oo and that the horizontal direction at
infinity 1s preserved (i.e., at oo +ths direction parallel to
the x—axls is taken into the direction parallel to the - *
axis). Purthermore, by eventually changlng the size but not
the shape of 1. it is possible to obtain a mapping for which
the loecal factor of magnification is equal to 1 at infinlty.
Since at infinlty the metric (37) approaches the metric with
constant coefficients

d5% = dx? + (i - MR)ay?

the above oond;tions me&an that

£ + NP o, Gl —1, 3 oo
ox 3y
N _,o, M/1 B (a1)
ax : 3y
as .
xs + yz—--;-co

A transformation satlsfying these conditions will Dbe called
nyrmaliged.
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If E(P) 1is mapped conformally with respect to the flow.
into E(), the resulting correspondence between the points
of H* and those of B(7) 41s conformal. Therefore,

u* -« iv*¥ ig a one~valued analytic-function of ¢ + iT and
can be developed in.a Laurent series for sufficiently large
values of |[§ + iN|.- The following result will be used later.

Lemma. -23 If the mapping of E(P) into E(7) 4is nor-
malized then . , . . e

wk - tvr = gqx - A2 . (42)
@ oom o+ AT
where.
r, = /1 u3, 3, £43)
doo " .
and . . _ . . :
f;; /[iu dx + v. dy : _ (4¢)

ls the circulation of the compressible flow.

The proof will be found in the appendix.

Gﬁnﬁugate Flows-
Given a compress1ble fliow' (in the (x,y)-plane) around
the profile P and an incompressible flow (in the (E,7)-
plane) around a profile TV, The complex.potential of the in-
compressible flow will- be. denoted by Q(ﬁ) =@y + Wy . Its
complex velocit" 13 _ . .

Since it 1i1s assumed that at infinlﬁy 61 0; € can be
written in the form

at) 6(g), G'(w)

,CD

The two flows will be called congugate (module n) if
there exists a real number . n,
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'0‘<r1<z
such that the transformation

.. ouy - ivy ' (u* .1+*)n o _ (45)
takes the distorbted hodograph H* of the compressible flow
into the hodograph EHj of the incompressible flow. The con-

nectlion between conjugate flows is shown in figure 3.

: The mapping. (45) definés a mapping of . B(P) dinto B(™).
This mapping 1s conformal with respect to the flow around P,
Por so is the mapping of E(P) 4into H*; and the mapping of
H*¥ into HE; (given by (45) as well as the mapping of Hj
into E{™) are conformal - in. the ordinary sense. The mapping
of E(P) 4into E(7) "preserves thd point infinity and the
horizontal direction at infinity (for at infinity both flows
are horizontal), On P (onf1) 6(63) is the slope of the

profile. According to (45) the slopes at corresvonding
points are connected by the.relation

61 = n¢ ; (46)

{(T"he slope is defined as the angle between the tangent to the
nrofile and the positive x-axls; the tangent pointing in the
direction of the flow. )

Conversely, if it is Uossihle to map B(P) into the do~
main "E(7) 4in: the. (f,N)=plane-exterior to a profile i, by
a transformatlion which ie conformal with regpect to the com-
~pressiovle flow arnund . P, ~ which preserves the polint o and
tho' horizontal direction at infinity, and which changes the
slope of P according to (46), then the flew around P 1is
conjugate (modulo n) to an incompressible flow around !
whlch has stagnatlon poinks at the.points into which the
stagnation points at P are’ taken and the direction at in-
flnitv of which is korizontal (provided such a flow existas).

For, let G(Q) be the complex votential of such a flow,
6'(w) = 1. Seb
uy - 1vy = g*R G1(g)

The mapping of B() into H* is conformal - that 1s,
u* - iv* ig & one-valued analytic function defined in E(M).
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Therefore, § = ~Im log{u* - iv*) 4is harmonic in B(M) ne
coinqides on.Il . with the harmonic function
1 = -Im log(uy - iv{). Therefore, (46) holds throughout-

E(™). Since =n log g* is conjugate to nf and
log:as = log {uy - ivy] to CEd

?19g'qif= n log g* + consbtant

‘The above constant must vanieh, for at infinity

Therefore
. q*B = qy ' (47)
and by (46) and (47), (45) holds.

'tiifiéﬁ'incompress{blg flow i's conjugate to a subsonic
compressible flow, then

: Qi;max.g'k ) . : N, (48)
i,

R

whers. -if;ﬁax ie the maximuﬂ épégd,and K dépands,uppn n .
-and the 'stream Mach number - M, of the compressible flow.

For q*pgax must be leés than I (ef-. (15)7 and therefore, by
(a7) - ' | -

q q*
i,max _ ( max) < q* _ (49)
%,

Note that q* 1s a function of 'q_ and therefore also of
¥ :

If the incompressible flow with the complex potential

Q(¢) 1is conjugate to a glven compressible flow, so is the
flow with the complex potential

% Q(Ag),_ A >0
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for ft has the same hodograpli. Thus the conjugate profile I/
can be chosen so that the mapping of E(P) into E() '1s
normaliszed, S ' .

If tlhe incompressible flow around. Il conjugate to a.,
compressible flow arcund P is known, then the velociﬁJ dis—
tribution (and therefore. the pressure distribution) around P
can be lmmediately computed Tor (46) gives the correspond-
ence between tle points of "I and P, and the specdis at
corresponding poéints are glven by (47), Eowsever, the present
method has not been developed sufficiently to permit a solu-
tion of the direct nroblem: to find the incompressible flow
conjugate to a compressible flow around a given profile P.
The followinz sections contain the solution of the inverse
problem: to find a cocupressible flow around a closed orofile
conjugate to a given lncompressible flow, and the discusslon
of the existerce of conjugate flows, which is by no means
gelf-evident.

II.~ CGONSTRUCTION OF SUBSONIC FLOWS AROUND A PROFILE UNDER
THE ASSUHPTION OF THE LINEARIZED EQUATION OF STATE

Simplifications Resulting from the Assumption Y = =1

Throughout this chapter the pressure—~density relation 1ls
assumed to have the linearized form -~ that is, Y is set
equal to ~1, Under thils assumption 1t can be shown that under
‘very ‘general conditions each compressible flow possesses &8
conjugate incompressible flow and vice versa. The inverse
problem can be solved completely and in a closed form,

The assumption ¥ = -1 implies the'following gimplifi-
catlons. ' ‘

1., The differential equation of the potential o 1in the
physlecal plane takes the form

: . . . : . a
(1.+ v®) 250 2 2uv 220 4+ (1 +u®) 2= 0
3% Bs3y . 3

(50)

[+]

it
2

.

i

i
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(Cf.. 92) and (10).) Thus the  surface

O o

(potential sur¥atce): is'a minimal surface (surface of vanish-
ing mean curvature). - .

S 2., The non-Buclideéan .length - 48 6f a line element ds
in the (x,y)-plane (cf, sec. Transformatione Conformal with
Respect to a Given Flow) becomes equal to,

a8 = dat/1 - M3

where 4! 4is the Buclidean length of the line slement on
the potential surfaces the projection of which is dsh

For, 1if. tbe angle between the direction of the velocity
,vector and s is dqnote@ by X, it follows .from (37) that

L

= !

Ca1® = Gl + ua) dx '+ zuv dx dy + (1 + Va) dY

U ﬁq;.:..j dg + (u ix-+ v dy)2

ds® + dg® qa cos® X,

dg® (1 - M2 §1n° x)
1 - M7,

R as T N

Aoue

3. The term ¢ + 1Y 1is an analytic function of u¥ - iv*
and of the gomplex variable id any plane into :which Z(P) isg
?ap e% conformally with ¥espeet to the flow.. (Cf£. (30),

33

Existence of Conjugate Flows

It will Dbe shown presently that to any compressible flow
around a profile P in the z-plane (obeying the linsarized
equation .of state) there .exists a conjugate flow of..-an incomw
pressible fluid around a profile {7 1in the 4 plane, nrovided
gither of the following two conditlons 1s satisfied,
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(a) The compressible flew is circulation-free. In thilp
case the modulus n ecan be chosen at randém. In particular,
it 18 convenient to set n = 1.

. (b) The compressible flow possesses a circulation and
tne Mach number at infinity is restricted by

M,</B3/2 = 0.866 . . . ) (52)

In this case the modunlus n 18 given 5y_

1

N = e,

J1 - u%

(53)

(Cf., fig., 4.)

, . Fgr thg proof, ‘map’ E(P) into the exterior of a circle
X = in the Z-plang, (Z = X + 1Y, R being a conven~
iently chosen constant) by a normalized transformatior which
is conformal with respect to the given flow. Then the corre-
spondeince between the distorted. hodograph H* of the com-
pressible flow and the domain [Z) >R is conformal - that
is, u* ~ iv¥ 1is an enalytic function of 2, By lemma 2,
this function has the form

T e o T (54)
. T B Z
s BT
I'y being given by (43), Furthefmére,’ p + 1Y 18 an ana-
lytie function of u* - iv*¥ and thersefore also of 2,
[Z)] >Ry V¥ =0 on (Z] =R for ¥ =0 on P. If Z goes
once around the circle |Z] = R, o + iV increases by I'.
Nextb,

1im 22 o 13 29 Bz + Bw 9y | . q
LI —awxd 7 5 »dx 33X  dy OX e
1im 22 =  1im .{QQ 9% L B 7| . g
Z—3>0 %Y 5. 5&'13%x 3Y - 3y oY

for the mapning is assumed to be normalized It follows
that - .
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o + ¥ = Q$<Z + Ef> - i 10g %7 + constant = Q,(2)
. 7 ‘2m o C e

Thus o + 4V is in the Z-plans the complex potential of a
flow around the circle |[%) = R. This flow necessarily pos-
sesses two stagnation points on the cirgle IZ1'=-R:> namsly,
the images of the stagnation points on P. For at these
points the lines ¥ = constant intersect the circle. It
follows that , )

2
alp + 1¢) _ L _R3\ . ir1 55
3z le X za> 2 T (55)

vanishes at the same points (2 = S,, % ;JSE;'Si = ~8,) eas

does u¥* - iv¥,
Agsume that there exists an-incompréssible'flow around

a profile .{1 4in the g—plané which is conjggate_(médulo n)
to the compressible flow around P. Let | ’

Z = i(t)'

mep E(™) conformally into [Z] >R taking. { = « into
Z = o, Without. loss of generallity 1t may be assumed that

Z‘(m) ="l: L

Then the complex potential O({) = Q3 + 4¥; of the incom-
pressible flow must in the Z-plane be of the -form

Q= Ei+9 (o + 1)

o)

The complex velocity ofgtﬁe-cdnjuggﬁe flow, wui - 1ivi,
is glven by I '

4 .
uy - ivy = E% -

On the other hand,

u, - iv, = (u*‘-'EV%)n
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Thersfore

4t _ g gg_v&ocu:wm) . LR )
az ~ az/at = q_ (¥~ 1v)

so that

() = ;/[k*n 1 - R_/Z ~ i/ 2w gmz az (56)
. (u* — 1v*)n . .

The numerabtor of the integrand in the above formula
possesses simple zeros at the two stagnation points. It can
be easily shown that at the two stagﬁation points (in the Z-
plane) u* . iv* " vanishes of an order not higher than 1.
For at these points Im log(u* - iv*) = -9 possescss jumps
of magnitmde eym, €47 and ¢pm being the angles atb the !
stzgnation points on P. Therefore Re log (u* ~ 1v*) = log q¥*
behaves at these points as ¢4loglZ ~ S;]). And it has been
assumsed. that P possesses .only sharp edges 1f any, 80 that
0<¢3;-< 1, It follows that at. 5y, and Sz the integrand
becomes infinite of an order less than 1, provided 0 < n < 2,
L%t all other points Z, (2] > R, the integrand is differont
from both © and wo. Hence the integration can be performed
also along the circle lZ] = R.

Now, since !! was asSumed to be a closed curve, the .
integral (56) must vanish 1f the integration is performed
along the closed circle 2] = R, By (54)

l 1 o ’"1 n -1111 .1

= 1+ = =+ . ..
(u* - iv*)n g*B ( A )
o)

so that the integrand in (56) equals

(2l DN 1

-

..

\\qo;" q,” 2m Z

In order that the integralﬁtakeh"élbng”a closed curve should
vanish 1t 18 necessary and sufficient that

nl* r
s *l - ~;'=7Or".
% qm .
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or, by virtue of €43), that - ,
(o1 - Mo - 1T = O . T T (B7)

Thie condition will be satisfied if either I’ =0 or n 1is
"determined according to (53). In this last case the condi-
tion n < z ylelds the bound (52) for Moo,

.o

Conversely, if (57) holds and n<.2, the function (56)
maps [2Z| > R conformally into the exterior of a clossd
profile 1 4in the {-plane. (Note that the derivative of
this function does not vani'sh.) ™his mMapping satisfies ‘the
conditions
'g(m)" A (g) .

. .

The resulting mapping of _E(P) 1nto BT | is conformal
. with resnect %o “the flow around P. Ohviouslv, .

%N
A EnL-QI[Z(g)J.,

. 2 e
isg the-compiexﬁpptqntial of an incompressiﬁle flow nround 1,
The .complex velocity of this flow is equal to (u* - iv*)R,
Thus the flow .is: condugate to the compressible flow arociind P
and the.assertlions: formulated 1n the beginning of this sec-
tion are proved . )

Properties of the Gongugate Flow
From the constructlion of tne congugata flow given in' the

preceding section, it follows that the circulation of the
conjugate incompressible flow is equal to7.,

qco. (1 + 1l - l".l.ca>

(r belng the circulation 6f ‘theé tompressible flow), provided
M has been chosen so that the mapping of E(P) into B(T)
is normaliged.
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For the conjugate incompressible flow the ratibo .
qi,max/qi,m cannot exceed K'= q*-2, (Cf. end of pt. I.)

. _ : .
X = 1 +/1 - Mo for n =1

_,/A*N“J

- / A2 '
x o)L +J1 = HE 1//1-4% A WE
= for n = - Mm
she et g My. - ) . :
(The #aluesuof--K' are plotted‘iﬁ fieg, 5.)
It should be noted that the profile [ ! constructed in
the preceding section is necessarily closed but need not be
simple ~ that is, !} might intersect itself, in which case

E(71) would be partly multiply covercd. .For this reason such
physlcally 1mpossible flows wers inc*uded in the diecuesion,
It 1s easlly séen that 1 "will alwavs be simple 1f P is
convex,

-

Solution:of'the—lnversa Problem

Suppose that an incommressible flow around a profile T
-in the’ {~plane is given and it’'ie- known that this flow is
conjugate (nodulo n) to a compressible flow around a profils
P -in- bbe'z—plane.- This section contalnsg the derivation of
the formulasé whiéh permit finding P - and the compressible

flow around P. It will turn out that these. férmulas always
yield a compressible flow around a closed profile, even 1if
'l and the flow around f7 _are chosen a% random.

Let the complex potential of the incomnressible flow be
given in'the form- -

QL) = a4, (e, 'G-x'cmy;l - SN

Since o + 1y (complex potential of the compressible
flow) considered as a function of { is analytic end real
on i1 and since dalp + iy)/dt vanishes 8t the stagnation
- pointsg of the incompressible-f‘o

p + i\{f == GG—(Q)
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O

C ©being a positive constant. Without loss of generality it
may be assum@d that. the mapping of E(P) -into EWT) 1is
normalized : Then - BT .

G=q_°°

Now, iet ds Dbe & line element on P and do the
corresponding line element on.({1, Then

dp _ g 46 _ 9o q;
;_da— o 41, *
On the other hand, on P . T .
EA dcp _ - o -
as s .q

Since the increase of ® on ds 1s equal to the inerease . of
® on d4¢, end since g4 F q*%,

EE = __ﬂm_. E’i —— qm q'*n b
: ] n
gd"ro- ' q.i & 4 q‘g‘" 4
By (18) ‘
g* 1 oy
— BT - 1l = R
" 5 ( g %®)
so that [ Tt o o
N d_s q.*n"‘l - q*n+1
do - ~-
q;n 1 q;n-f'l ‘
: < ke ; ’ L 1el/n * R R A .
-4 /3 4y 2z
T n-1 n+1 - (59)
* -
RN S TR

'Since

{59) can be written as o Y
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is _ i*QL_E%}Ggfg)li-l/n _ ua}:'(§)11+1/n} (60)
3o )
wherel T qta— that tse,
b —Ta (61)

1+J1-Mi

Next, let dz and at ‘be the complex line elements on P
and '}, respectively: :

as olf = a5 eiGi/n

dz =
af{ = dao 9161.
Then .
az = £2 g0 o181/n (62)
Since

—————

e (e) = e1(t) ol®1 o BT(f) e~ib1

there 1s obtained by 780) and (62)

. _ 1 . 1~1/n R “ 1+1 /n 1'
dz _‘1_:“;5 {% (;) | at w® GV () dﬁj

-

Integration yields the following representation of the pro-~
file P:

%z = constant { Gl(g0173/“ af - ua-/PG,(§)1+1/n dC} (63}

the integration being pérffrméd along 1, (The value of the
constant factor affects only the size of P.) "

For a circulation-~free flow and n = 1. thie formula
simplifies to : ' : :

z = constant-{g - paJZQG'g af }-' (64)
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(64) and (61) are exactly the formulas given in Tsien's
paper (references 14).

Parametric Representation of Subsonic Compressible Flows

Formula (63) has been derived under the assumption that
the integration is being performed along ! and that the
existence of a conjugate compressible flow is known before-
hand. Both .conditions are unessential, TFor the following
general result holds:

Let G(g) " be the complex potential of an incompressivle

flow around a profile {t in the ¢ —plans,

G' () = 1 = (65)

Let ¥, be a real nuﬁﬁer-such that

0< M ,< 1l if G 1is one-valued,

C < MOD <AN3/4 1f G 1ig multi-valued.

Mm . - .. . %

W o= &66)

2
1+ 1 - M5

% 1 +8, 0<8<1, 1if G 41is one-valued

n = _ : (67)
1A0/1 - M3, if @ is multi-valued
K = p.—n ’ ) (68)
If for § e¢E(T), . |

ter ()l < x : (69)
then the funciion .

s = o{f e ()™ gy u"f@%ﬁ)””“ dg} (70)
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¢ >0, mapg E(7) 4irn a one-to-one ménner into the exterior
B(P) of o closed profile P in the z-vlane taking ¢{ = o
into 2z ~»w, and

P = 20 ¢ Re G{‘C) (71)

considered as a function of x and y is the potential of
& subsonic compressible flow around P (obeying the linear-
ized equation of state) of stream Mach number M_.

The two flows are conjugate {modulo n). The mapning of
E(P) into IZ(7) 4is normalized by choosing ©C = L/(1 ~ p2),

The proof of the mapping properties of the function (70)
will be found in the appendix under O. Since the mapplng of
BEQT) 4into E(P)} is one-to-one, ¢ may be considered as a
function of (x,y). Zquations(70) and (71) may be rewritten
in the form

x = Re £(¢), ¥y = Re g(l), ¢ = Re h(¢l) . (72)

where the anelytie functions £, g, and h are given by

£(¢) = © (g12-2/n _ 3@ gua+a/ny at o
slg) = ~;G~/ﬁ(G'I"1/n + p? grita/ny g¢
h(¢) = 20 ; G
Since
£03 4 gt® 4w 2 0

(72) is the well-known Welerstrass rarameter representation

of & minimal surface. Hence, o(x,y) satisfies equatioan (50)
and therefore is a potential of a compressidble flow.

It is shown in the appendix under C that as { —> o .
OX _~6(1 - n?), 8% _oo, Y oo SY . 6(1 + p?)
3t an at ' an )



NACA TN Na. 969 33
(Cf. (63),) By (65) and (71) this implies that as z —> o

m’--"->

— 2B 8 _ o o
ax 1 -

2 ay

Thus, at 1nfinity the compressible flow is parallel to the =x-
axis and

2 M,

1w V1o wE

so that M_, 1is actually the stream Mach pumber .

It ig alsgpo shown in the appendix under C that the direc—~
tion normal to [T 1g taken into the direction normal to P,
Since the normal derivative of @ on 1 vanishes, ,s0 does
the normal deriyative of ¢ on P. Thus P 1g a streamline
of the compressible flow. :

The fact that the two flowe are conjugate follows simply
by comparing the velocitles at corresponding points of P
and M, The detalls of this computation may be omitted.

From the preceding section it follows that the paramet-
ric representation (70) and (71) yields all flows satisfying
the conditions stated in the beginning of part II., (Note
that neither 11 nor P are necessarily simple curves,)

Construction of a Gompresoible Flow around & Profile
Similar to a Given Profile

Suppose & profile. Py and a point S on this profile
are given and 1% js desired to- find a subsonic compressible
flow around a profile P- similar to P,, possessing a pre-
scribed stream Magh number M (M, <./3/4) and a.stagnation
point near the peint S, (Since § 1is determined by the
angle of attagk the last requirement determines approximately
the position of P with respect to the undisturbed flow.

This problem caq be solved a8 follows

For the gake of dafiniteness it will be assumed that the
profile P, haes one sharp (trailing) sdge. It may be asge-
sumed that the function mapping P; conformally into a circle
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"is known. In fact, this function can be easily computed.
(See reference 13.5 The first step conslsts in forming an
incompressible flow around P, whkich possesses stagnation
points at the trailing edge and at 8. The direction of
this flow at infinity is taken as the §¢~direction in the
plane of P; ({-plane). Now, if E(P;) 1is mapped into

12| > 1 by an analytic function S ' .

_Z = E(g) (73)
which satlsefies the c&ndifians
Z(co) = oo, . 72 (o) > )

then the sharp_tréil}ng edge and the point '8 are taken into
the points e~*®, ~e*®, respectively, . @ being real (cf. fig.
6); oL ’ ) ' v . .

From Y5 1s determined the modulus n by (53); Fow,
let: Gy  and Oz De two circles passing.through the points
e"iq sxid ééim “which i1ntersect at the angle nm.  The
funetlon” Co. _— .- T v :

b= FilE) _
inverse to (73) mapé.the‘infinite_dom&in'béundedlby an arc .
of C; and an arc of OC; into the exterior of some closed

profile 1., Profile [ possesses two singular points: the
tralling edge which colncides . with the trailing edge of P,
and the point S. The angles there are np and aw, B

being the angle at the trailing edge.of .. P,.

Since’ & domain bounded by two. circiilar arcs can easily
be mapped into the exterlor of a circle, 1t is easy to com-
pute incompressible, flows around 1, e

From M, ié_détermiﬁedl'q&. iby“(llf} and g% (py 
.(18))., ©Let G(t) ©be the complex potential of an incompress-—

ible flow around [1 which satisflés the Kutta-Joukowski
condition at the %railling edge and the condition

G' (o) = 1
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It is easily seen that this flow possesses a stagnation point

at §. The same is true for the flow with the complex poten-
tial .

= e I
qi,oo G(g)- q.i’m Q’;

Jow a compressible flow around a profile P 1is con-
structed which is conjugate (modulo n) to the above incom-
"pressible flow; P 1s given by (70). The velocity potential
is given by (71)., The distorted speed g* of the compresse

ible flow at a point 2z of P 18 equal %o

a* = qilfn

gy Dbelng %the speed of the incomnressible flow at the corre-
sponding point of {1, From q%, g 18 determined by (18).

Since the angle bpetween the x—-axis and the tangent to
P at a polnt =z 18 equal %o l/n times the angle betwson
the f~axis and the tangent to [l at the corresponding point
{, it is seen that the profile P will possess only one
sharp edge, the angle there belng B.

The profile distortion (i.e., the difference between P,
and P) is due (1) to the difference between P, and I and
(2) to the difference between [1 and P, This distortion
will be small if M, is not too large.  For then wuw® 1ig
small and 1n close to 1. (See table II; in fig. 4, n and
uw? are plotted as functlions of Mm.) Therefore, the eircles
C,, O are close to the unit circle and 1 close to P,.
Secondly, 1~1/n wlll be small and therefore the first term

in (70) will be close to ¢ while the second term will be
small as compared to the firsst. : '

0f course, it is possible to construct {1 in many
other ways. If the flow around P, which has a stagnation
point at S is circulation-free (i.e., if a = 0), it 1is
.possible to set =n = 1, Then P, colncildes with .
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Alternative. Formulas

It ie ugeful to write the formulas transforming an in-
compressible flow into a compressible flow in‘a different
form., The (dimensionless) speed at infinity, q, will De
used as the parameter characterizing the flow.

. From formulﬁs (52), (61), and (11) it follows that
n =41 + q® . | (74)

p2 = B = 1 (75)
n ¥ 1 :

+The function mapping the profile M 4into the profile P
_takqs the form , '

2 = n_:z_ifc;:(g)l"‘/n ag - 21 /‘ar_(g)‘_f‘/’“ at  (76)

The potentinl at the compressible flow is given by

v =./0% - 1 ¢ C77)

(The arbitrary constant appearing in (70) and (71) has been
. chosen as 1/(1 -_pz)l= (n + 1)/2).) Pinally, the speed ¢
of the compressible flow around P is given by

D e/
- @[

n 4+ 1-/.°

q

(?8)

This follews immediately from formulas (47) and (18), by
noting that in this case a B

= 3B '
qy = U 1G]



NACA TN No. 969 37

Teien's simpler formulas whlich are valid for the case
of a clrculation-free flow may be rewritten similarly.

I N _e_-_?./’el(m at
2 2 . _
- 13
o253 1o
n - 1 .
1-( )}c—(:)

n

(79)

P 1is given by the same formula as before (formula (77)).

III, CONSTRUCTION .OF SUBSONIC FLOWS AROUND A PROFILE
UNDER THE ASSUMPTION OF THE ACTUAL EQUATION OF STATE

Existence of Conjugate Flows

In this chapher it is assumed that the pressure-density
‘relation 1s not of the linearized form but a general one,
say the polytropic relation (Y > 1). It will be shown that
the conetructlion of & compressible flow for a given conjugate
incompressible flow reduces %0 the solutlon of a boundary
value problem for a linear partial differential equation in
the physical plane of the conjugate flow.

The discussion of the existence of & conjugate flow for
a given compressible flow sround P can be carried out in
the same way as previously. The essentiasl difference con-
sists in the. faet that so far 1t has been impossible to chapr-
acterize completely all compressible flows possessing conju—
gate incompressible flows.and to determine a priori the
modulus =n.

Considser a compressible flow around a profile P in the
z-plane. It has been shown that it is possible to map B(M)
into the exterior of a circle ]Z[ = R Dby a transformation
which is conformal with respect to the flow and normaliged
at infinity. The two stagnation pointe of the flow are taken
into two points o



38 ' NACA TN No. 969

".:Zl. = Re-ia‘;l Z5 =.Re"i(c“+8)

The flow will be said %o satisfy condition A 1if
8 =_:lT-"2d, |

thet is, 1f

Assume that condition 4 1is satisfied, and set

I, = -47 q R sin.o . - (80)

If
O<r /T<2/1-¥ - (81)

(I being the circulation of the comvressibdle flow), the
flow will be said to satiefy condition g. If T = 0, condi~
tion B implles that r, = 0.

In the case Y = -1, o + 1Y 18 an analytic function of
Z; condition A is always satisfied and P is equal to I.
Thersfore condition B 18 satigfied for

' =0 and for ' # 0, M_ < 3/4

It is conjectured {but hes not been proved) that A 4w
always satlsfled and B 1s satisfied if M, does not exceed
some limiting value. : : : '

" Condition A is certalnly satisfied (by reasons of sym-
metry) if either of the two geometrical conditions holde:

(1Y P 1s symmetfic with respect to the x-axis and the
flow is circulation~frsee.

(ii) Both P and the flow around P are symmetric with
respect to the y-axis., (This type of flow includes flows
with circuletion.)

Plows of type (i) obviously satisfy condition 3B, In
general, it may be assumed that B will be satisfled In many
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cases. For the flow satisfying the linearigzed equation of
state 1s a rather good approximation to the flow satisfying
the actual equation of state and therefore P, should not
differ too much from I. ; .
If 2 compressible flow satisfies both conditiong A .
and B, then it is conjugate (modulo n) to an incompressible
flow around a profile (1 in the ¢{-plane. If P =0, n is
arbitrary and pay be chosen as 1. If T # O, n 1is given Ex

r ‘1 : oo
R T L . (82)
r ../1_-.. M2

" The proof is almost exactly the same as the one given
for the special case Y = -1 and it will suffice to sketch
tl.e argument,

Let (, be the complex potential of a Tlow around .
|2] = B which has stagnation points at 32; and Zp and the .
veloeclty g, &t infinity. Then Q, has the form

Q, =a (2 + EE) - 32 152 2 + constant
. > - p:A 2n . S
I, Dbeing given by (80). 'As before, u* =~ iv* is an analytid
function of " Z and has (according to lemma 2) the form (42),
If there exists a conjugate (modulo:n) incompressible flow in

the - f{Lplane (around a profile 1 ), its complex potential 0
considered as a function of Z must have the form

Q= AQ, (A a real constant)

As before, the function which maps 12| >R intoe E() will
be given by 7

Tt (2) = A/’ 1"; (u* - 1v¥)=B az (83)

and the requirement that [1 be a closed profile leads'to the
condition E .
'ar'y  Ta

= ——

qa

%*
'q-co @
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or
nT* /1 - Mi: 1"8 | (84)
which 1s satisfied if either '

P = 1"2 =, 0

or n is determined’ by (éa),

Conversely, 1f (84) holds, formula (83) yields a closed
profile [1 (note that by .(81), -0< n< 2) and the incom=-
pressible flow around [1 which .has the velocity q; = a*n»

b}

at infinity and stagnation points at t(z,) and t(3z;), 1is
conjugate (modulo n) to the ‘given compressible flow.

It can be easily seen that the conditions 4, B are not
only sufficient but also necessary for the existence of a
conjugate flow,. - ' :

Solution of the Inverse Problem

Suppose that an Incompressible flow around the profile

(1 in the ¢~plane is conjugate (modulo n) to a compressible

flow around the profile P 1in the z-plane. It has been
" shown that ¢ and ¥ (potential and stream function of the
compressible flow) satisfy the equatlions (33) in the distortsed
hodograph plane, Since the ‘correspondence between the disg~
torted hodograph E* and E([) 'is conformal, it follows
that ¢© and ¢, - considered as functions of § and 1, sat-
isfy the equations

8o _ ¢ OV
of on
. (85)
o9 _ _p ¥
on. .ot
and the seéond-order equations ‘
21 a2 _1'_"5325}_
3 {T 3‘?} * o {T onf = © (86)
3 9N, 3 .3 =0 (87)
3¢ {T 5t * I {T an}
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If the incompressible flow around [} is known, T 1is
a. known function of £ and. M. For, T "is a known function
of q (see (27)) and therefors also of (see (14), And
at corresponding points of E(P) and E&W) q* and qy

(the speed of the incompressible.flow) are connected by the
relatlon

= *n .
Therefore the equations (858) to (87) are linear.

The boundary conditlons for 1@ and - Y are

Y = constant, 32 = 0 - (89)
. \ . . og \ o ;
g% indicaﬁing'differegtiation in the direction normal Eo r};

At infinity o and ¥V must satisfy the conditions

32_..>c.-6'§£2__>o (90)
at vZ 5 3

and
-a—y-——-—->0, ——\k———>0 >0 (91)
ot an

where €, and G, are posiﬁive constants. This can be eas-
1ly verified by noting thaet the mapping of EB(P) inte E(M)
preéserves the horizontal direction at infinity.  The rnumeri-
cal values of these conetants are:of no consequence, since
both the differential equations and. the boundary conditions
are linear and homogeneocus.

.- Funetlion  must always behoneavalued; @ is one-
valued only if I’ = 0. Moresover, ¢ and VY must satisfy
the conditions:

-

gré&a“ ¢ < o, ‘grad?® VY < o (e2)

Thus, it is seen that the equations (85) can be inter-
preted physically as the equations-of"motion of a compregsi-
ble fluid of variable den51ty P which-is a given function
of gpace: '
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p(E,m) = B (93)

1 - M3

1 is a streamline of this flow and at infinity the flow has
the positive §-~direction.

Assume that ¢ 1s known as a function of ¢ and N

and set
-~ _ 3\ dp\2
1= /G - &) (94)

(§ 1is the speed of the fictitious compressible flow of den-
sity p). Let ds be a line element on P and do the
corresponding line element on M. Then

ap .
as ¢
4y .
o - ¢
so that
4s '3
dao Q

Since the angle between dg and the x-axis 1s 6 and that
between dg and the ¢-azis is 63 = n8, it 1s seen that a

representation of the profile P can be obtalned by

2 =L/ﬂ i o1 44 _ (95)
" .

The connection between the profiles P and [1 can also
be expressed by the formulas '

(96)
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vhere Rﬁ-_is the radius of curvature of the profile P at
some point " z and R/ the radius of curvature of [l at

the corresponding point . Angle § is known along [1 and
sg is q, for q* = q;/n_ If .§d 4is known along {1, then

‘?he)profile P can be constructed graphically, using (95) or
g6). :

Solution of the.Inverse Problem (Continued)

It has been shown in the preceding section that the con-
struction of a compressible flow conjugate to a given incom-
pressible flow depends upon the solution of a classical
boundary value problem for a linear partial differsntial
equation (equation (86))"or equation -(87). The integration
may be performed not in E() but in a simpler domain, say
in the dcomaln exterior to the unit cirecle. For a conformal
transformation of - Eﬂj) into such a domain takes equations
(86); (87} into equations of the same form and does not af-
fect the guxiliary conditions. . Nevertheless, the actual in-
tegration would bPe extremely laborious, espsescially in view of
the facdt that ‘the coefficient T would be ‘glven -either numer-
lcally or . by & vsry complicated gsnalytlcal expresgsion., Fur-~
-ther research is necessary in order to reduce the computation-
al ‘'work to -an acceptable minimum.

The physical interpretation of equations (85) given in
the foregoing shows that these equations can be solved mechan~
ically by G¢. I. Taylor's well-known method of the “electroi. -
lytic bath", (See reference 14, } It should be noted that,
whereas Taylor applied his method in order to obtain a se-
quence of successive approximations to the solution of the
direct problem (i.e., to the computation of the compressible
flow past a given proflle) in this case the method immedi-
,ately furnlshes the exact solution of the ihverse probiem.

_ Tor slow flows (1. e., for flows where thHe local Mach
number s small) the following approximate method ecan be
used.

, . The coefficient. T in the equations (85) is equal to 1
for M = 0. and decreases very slowly as M increases to
_about 0.6, as seen from table I, where the pelytropic rela-
tion with ¥Y.= 1.405 has been assumed (ef. also,fig. 2).

'Theréfbre, for low Mach nimbers, the dengity 'E “of thes
fictitious flow in the f-plane (see preceding section) is
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almost constant so that g3 will be a good approximation %to
d. HReplacing q by gy = 1*% in the formulas (95), (98)

yields
g*n
= * eie do (97}
\ q
and
R *n 1
F n 4 ' £ -z (o8)
Rn q ei n
Since ‘l1s known as a .function of qq and therefore
q*n :

known along F] the profile P can be immediately con-
structed.

From figure 2, where ¢q and q%* are plotted as func-
tions of M, it 'is seen that the profile distortion will be,
small for small values of Mg and fzr n close %o 1,

This approximate method is based upon setting, T =1,
The sameé assumntlon is made in the Tchaplygin-Karman-Tsien
approximate method, However, thers the equation of state 1=
changed accordingly and the resulting differential equation
is integrated rigorously; whereas here the rigorous equation
is solved approximately. (However, see also reference 12,
p. 348, :

Construction of a FPlow arocund a Profile
Similer to a Given Profile

Suppoge it is desired to construct a compressible Fflow
around a profile P similar to a given profile P, and hav-

ing a prescribed staznation point S. 'For the sake of defi-
niteness it is assumed that P, possesses one sharp tralling
edge,

Sinece the connection between n and M, is not known
a priori 1t is advisabls to start by choosing a value for =n
and constructing a profile [1 such that 1f P is obtained
from [l by using (95) with this value of n a profile pos-
sessing only ozne sharp edgs will result. Profile [1 can be
constructed by the method described in the preceding chapter.
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Let =G(§) be-the potential ;of a flow around rl‘which
has the veloclity 1 &t infinity... It ie now necessary to find
a value g* such that if g* is determined as

e (e )

and” T is determined as T = the values of § ob-
tained by integrating ecuations %85) to (87) will lead to a
closed profile P, when substituted in the relation (95).

At the pregent state of the theory this can be achieved only
by a trial-and—error method. It ie conveéenient to start with
the value of q%, ‘given by (74) and then change this value-so
as'to obtain a closed profile’ P, Since this involves the
integration of the equations (85) to (87) for different fune-
tions T, the amount of computational work is rather consid-
erable, .

In the case of a eirculation-free flow the situation is

nmuch simpler for q% 1s independent of n and n may be
taken as 1.

CONCLUDING REMARKS -

A method is given to trénsqum“a two-dimensional incom-
pressible flow around a closed profile into a subsonic com~ - «w -
pressible flow around another closed profile. . The profile

dlstortion is. small for small’ values of the stream Mack num~
ber.

In the casge of the actual equation of state the trans-
formation depends upon the solution of a classical boundary
value problem for a linear partial differential equation. An
approximate method of solving 'this problem ieg indicated.
Further theoretical work is required in order to establish
the validilty of the method in all cases and in order to reduce
the amount of computational work.

It is-believed that, after the solution of this inverse
problem is completed, a way of solving the direct problsm
(computation of the flow around a given profile) will be open.

If Von Karmédnts and Tsien's linearized equation ‘of state
1s assumed, this transformation is carried out completely and
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in & clossed form not only for flows without cireculation .
(which was slready done by Tsien) but for flows with circula-
tlon as well,

Concerning the applications of the linearized equation
of state (Y = ~1) the following mgy be said. This equation
of state can be applied consistently. But, it also seems
worthwhile to try to use the assumption Y = -1 only in
order to obtain the values of the dimensionless speed g ‘and. to
eompute tho resulting Mach number by means of the rigorous
equation of state.

Other applications of solutions based upon setting
Y = <1 also suggest themselves, for instance, to the solu-
tion of the exact equation of motion by successive approxima-
tions (by using thé solution for. ¥ = -1, 1instead of the
qelugion for an incbmpreesible flow. as Ehe firgt approxima-
tkon

Numerical examples and & comparison with other methods
will Dbe given ‘in a subsequent report.

t

Brown University, :
Providence, R. I...Apri;lzg,-;944;
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.. APPENDIX , -

A, This segtion contains the proof.of the following

Lemma 1 Léf:'

g = ﬁ(x,y), ]

= Tl(x.y) (Al)
be a ﬁ;ansfdrmétidn of a-domain D ‘in the (x,y)-plane into
'a domain A in the (f¢,M)-plarne, Let '@ and  Dbe functions

!

x and y defined in D. (By virtue of the above trans-
formation they may also be considered as functions of ¢ and
N defined in .ZT§ Iif and VY satigfy in D the differ-
ential egustions x . : T

8

B o, BV
ox 3y N _ _
L T Y A e alx,y) >0 (a2)
Sy QIJ Lo '

gndﬁi A _ﬁheidiffeﬁential equétions .

LBy R : N o . .
= B3

7. B =3B(t.n) >0 - | (43)

g

&

QQ._ R
n T "® 5

.
W, . ' o * ) .

.then. the trangformationV(Ai)'lﬁ“gonfbrmhl'with respect to the
following Riemann metric defined in D;

as® = ¢ ax® + 2f dx dy + g ay° , (Ad)

where
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BZ

N e = cos® @ + e sin® g
£ = (1 BE) sin § cos (A )
- i3 & - 5
2
g = sin?6 + %E cos® g

S S

and © is the ansle between the line y = constant and the
is: T ' . .

tan @ = 2@ /90
oy dx

Geometrical proof. (Cf, fi 7.)- Equations (A2) show
that the lines @ = constant and ¥ =.constant subdivide
the (x,y)-plane into infinitesimal rectangles of side ratio A,
Similarly, equations (A43) express the fact that the lines
@ = constant and Y = constant subdivide the (f,N)-plane
into infinitesimal rectangles of side ratio B. Therefore, in
the neighborhood of some point (x,y) the mapping (A1) can be
described as the product of a similarity transformation and a
transformation which contracts all lengths in the direction
of the line ® = constant in the rasio B/A, But a mapping
conformal with respect to the metric (44) is exactly such a
mapping. TFor, let ds = (dx, dyJ be a line element 1in the
(x,y)-plane and let o ©be the angle between its direction
and the x-direction. Then d4x = ds cos o, dy = ds sin o,
and ¥ = *(8 =~ o) is the angle between this line .element .and
the line VY = constant. A short computation shows that the
non-Buclidean length of ds, as given by (&44), is equal to

a5 = ds/1 - 11 - B®/A®) qin® g

Thus, for ds.:paréllél to the ‘lins o = consbtant,
48 = (B/A)ds, and for ds parallel to the line V¥ = constant,
dsS = ds.

Analztibal proof .~ Bquations (43) can be writtgn.iﬁ the
form ;
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Bi]

W 3x , 3p 3y Y 3% -, dy By
-————-!—-h—ce' B< +
ax 3t . oy 3x 3n 3y an

_p (23X , 2y Ay

3x 3n dy an dx at ay at

By use of the relations

8x _;9m 3x _ . 3¢

3t = ° 3y' on - I oy

ot 89X dn - = 3%
;o olx,y)

o(t,n)
this can be written in the form

éfgzi,_'aﬂgﬂz;B(._a_mgﬁ._gwﬁ
3% 3y . 3y ¥x - 3% 3y 3¥ 3x

dx oy 3y ax 3% Y dy 3ax

Introducing the values of 3y/dx and éw/ay given by (AZ)
and using (A6) gives

% coéue %ﬁ + % gin © gﬁ = - sin 6 %2 + cog O g?

gin 6 1 cos O °9f _ B cos 8 SN + B sin © on
33X oY A ax A oy
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Solving for 3f/3x and df/dy gives

g% = {( - 1) sin § cos e (B sin® g + cos® e>
at _ _ A 2 B> 2 .\2 ., /B® _ an
3y = 3 (sin 8 +_Kg cos 9) 3k + (Az 1> sin B cos B -

If the notations given by (AB) are used, these equations éan
be written in the form o

o 20 _ oM
8t _ __ov 3x
ax

+,/eg ~ £?
dy

But these are the well-known Beltrami equations which express

the fact that the mapping (A1) is conformal with respect to
the metric (A4).

Rema&k: The converse of the lemma is also true and can
be proved similarly. A transformation (Al) conformal with
respect to the metric (44), (A5) takes o and V satisfying
(A2) into functions which satisfy equations (A3) in the
(€,M)-plane.

B. This section contains the proof of lemma 2. If E(F)
is mapped into .BE() Dby & transformation

t = t(x,y), T = Nlx,y)

which is conformal with respect to & subsonli¢c compressible
flow around P and such that
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E'a+ T]a-—.——>cu

9. : 3 -
3x oy . ©ox oy
as x° + ¥y > o
then u* - iv*, oconsidered as g function of ¢ = ¢ + iN
"hag at “the neighborhood of  f = Eae: Laurent development
u¥* - lv#* = qf;- il i + . . . (32)
. - o g
where
r =/1-u2 8% (B3)
Qe

I’ being the eircnlation of:the flow around P,

The above transformat&on-can be written in the form

y
E = A b/P _iizi____ ix! +J/a 28(x, ¥') gy
. A

: . 8x! 3y
. ; - . X .l ' oy
= A + (x ~ a) + __é_iil__'_}?_). - 1-1dx| +fag(x»yl> a
. ax! J Jy, ay!
. e a . |
CE y o o .
: . . e axl e . b_ . aly.l i

s / LIETRS RN /*(_m_ﬁ;_) N}

ax! L. .oy
where (a,b) is some point of ‘E(P),

= E(a.bj.' B-=;ﬂ(a;b>.
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and

Loy

om/1 - ¥

If use is made of 1!'Hopital's rule and (Bl), it ie seen that

‘x‘ +:o‘(~/._x.2 )

E =
a+',y'a--——>ca
N = Ny + oly/x® + y7)
Introducing
2 2 _3
_Ra=;x + N ¥
shows that
E = x + o(R)
S : (B4)
M=N_y + ofR) :
Therefors:. '

1_ 1 o 1 . 0(;)
{ x4+ N,y + o(R) x + 1N, ¥ R

o)

Since wu* -~ iv* is a one-valued analytic function of {
in B(M) 1% possesses the Laurent development

I

1
{n

o + 18 @z + i85 .

¢ B

'll* hd iv* = q.*m'!‘ [ . . (Bs)

2

{ .
Hence, for sufficiently large values of x° + ya,

+ 1
u¥ - 1v* = g* + il ﬁ (—) . : (B6)
& x-l-iNooy
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so that
% + XN® ya a
o
o= B T2 PR o2 (38)
2 3 2
x + N ¥
q*a - u*g + v*a
+ BN 1
= q*a + 2q* -——-—-——-———-—-—-a’x 8 2 + 0(—) (39)
R o 2 4+ N2 ® R
4
* = g% ax_+ BNy 1
q* = q* + -+ o (B10)

2 2
x + N2 ¥
Next, q/q* 1is an analytic function of q*, so that

f?; = f‘;% + Aela* - g% ) + 0(lg* - g% ®) (B11)
<0

lg* - q*le —> 0

cwhere

=, Se (-l- - 1) (B12)

slnce

(Cf. the definition of the conjugate speed a*.)
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By (B1il) and (B10)

b4 = Y% + 4 ax + Bﬂmy-f+ 86%)

* * © .3 2 2
a % x° + N° ¥
Therefore

u=g_u*=qm+;1_1°°x+ﬁN =+o<l) (313)

q* q;N xB+N2 2
=g_*_;t_mva-5x+< Bl4
veoo T TR T o(3 | (B14)

'fhé:aymbol p 1is an analytic function of q &and there-
fore also of a*, Hence

vay

P =P, * Bm(q—* - C_lto) + 0(Ja* - q*_[® (B15)

o VA
la* - qff—> ©

where . .
' ' 2 o
B, = 28 _ = P ly . -(B1s)
@ &q* |- g ¥, . T 0T
: ¥ =iq¥
since},ﬁ&;ﬁ@fﬁot&li's equatibn,
;-'ilf. = - B M2
dq q
By (B15) and (B10)
' + BN
p=p, +38 ZTPa T °<"> " ($17)
2 ., a2 Co
X ‘N'@ .

so that, by (B1i3), (Bl4), and (B17),
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q oX + BNm h'4 /1
PU = P Qo + P ~2 N, — + ol = (B18)}
o Qe Ny - BX 1
PV = P =2 =+ 0<R> (B19)

q;-xa + Ni ¥

Now, let C %be any simple closed curve containing the
profile P in its 1nterior. Then

r =‘//’u dx + v 4y (B20)

c

0 ;L/ﬂ pv dx = pu ay (B21)

c

In particular, it is possible to take for C the ellipse Op
with the semi-axis '

a='R, ‘b=—R_
e
the equation of which is

o x2+N;Y2___R2

For sufficlently large values of R the development s
for wu, v, pu, pv previously obtained may be introduced
under the integral signs in (B20), (B21). Then, using Green's
theorem and denoting the interior of Oy by Er results in

u/q q, 4x + —gu/n ;:-—— (ex + BN, y) dx
4

3
i

Em (aNeow ¥ - Bx) dy1 + o(1)
L q' .f
= - 2 8§ _m g JQ}/hx dy + o(1)
R® g )
= - -ﬁzjigiﬂ + 0(1)
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o
]
I
.
w(i\
5
8
Q
8
) o
_+
ol
59\\3
0
8
3k
15
=
O]
i
w
W
L'
[
“

- P
P gx J
= = Pao S zaNm~Z7p ix dy + o(1)
R® aX
By

- op oo v + o(1)
. q*

Letting R —> o ylelds

21

r o= - o 0= - 2map_ 2=
Neo a% “ o
'
~ whence :
*
B=-YoTas .o (B22)

If thieg is substituted into (B5) it can be seen that (B2),
(B3) 1s verified.

' C. This section is devoted to the proof of the properties
of the mapping function (70) which have been announced and
used in derliving the parametric representation of subsonic
flows with Y = -1, e : :

First of all, this function maps ! into a closed pro-
file P and is one-valued in E(M). In fact, let J be a
closed curve around [1 and 4 . the increase in 2z as
goes once around J (J may coineide with 1 ). For suffi-
clently large values.of [¢[, G!'(f{) has the Laurent develop-
ment '

G1(E) = 1 + -2 + 22 4+ , , ., & Teal

it @ *
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Therefore-

¢ = {L/ﬁefct>‘ A/ at.- MBL/P o)/ }
= 2mh, {(1 - 1/n) - w® (1 + 1/n)}
If 4, = O, . If A, #£ 0, 6G(L) 1is not one-valued,
go that =n = 1/J 1~ M8 apd therefore '

(L -~ 1/n) - p® (1 + 1/n)

so that 4 = O,

Next, let dz = dseie be the complex line element on P,

at = dcreiei the corresponding complex line element on 1,
On M

G1(L) = Jor| =161 | (01)
so that by (70) :

az = cle =™ (1 u” ey a/ny o183/n 4 (c2)

andltherefore .
ds 1~1'n -3 2/n
= - ooy /3 (1 - ey 2Ry

1

By virtue of (69) ds/dc cannot vanish exdept at the two
‘stagnation points where . G' = 0, and .is posltive elsewhere,
Hence the mapging of {1 into P is one-to-one. )

Furthermore, it ls easily seen.tﬁati 2z ig finite for
all finite values of Q and z = o for { = o,

Finaily,.the Jacobian

'a(x. y)
2CE, M)

does not vanish in E(M). For
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8z _ QE l-1/n - ,1-17n
3¢ ~ 3¢ 5‘5 oce L )
(c3)
an—i<8§-a-c_);ic(g + 26 )
And h
alz, ) _ 3z 3z _ 2, @ 2-2[n g 4/n
a(e, m - \3g am) = O 1O (@ - wjer 705

The expressgsion on the right-hand side is not gero, for it is
always assumed that there are no stagnation points within the

flow and (1 - u4]G'f4/n) > 0 by virtue of (69).
From the preceding results 1% follows that (70) maps

E(M) 4into & simply connected domain E(P) containing the
point infinity and dbounded by & closed curve P.

From (C3) and (65) it also follows thet as —f—> o

ax (1 - p 9x o, ¥ 0, 2% c(1 Z) (cs

Finally, if d4¢f = 1 d.oeiei ig a complex line element

situated at a point of [1 and normal to [, the correspond-
ing line element dz is, by (70) and (O1) glven by

az = 10161 [*H/2 (1 4 e 2/R) o181/2 44

By comparison of this with (C2) 1t is seen that the direction
normal to [ 1s teken into the direction nqrmal to P.
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TABLE X 24318 . (Gontimmed)
q log q* q# | T
The distorted speed (q¥), the Mach mmber (M), the 10 /

dimensionless donsity (e) s and the coefficlent of the symmetrized « 81 641159 | .4%766 +51506 | .95245 »99595
.32 654211 |.45104 | .3B337 | .94058 | ,90652
hodograph eguation (T) as functions of the dimensionlers speed -33 066055 | .4645¢ | 33570 94843 99604
_ . €79051 |.47758 | .34405 | ,94510 | 99551
" qe (= 1.406; q, = .911876; oxly the mantissas of log ¢* ] .85 690887 |[.49071 | .25442 | ,05008 | .9049%2
are given,) " 7ORE4S | .5057Y8 | .5a482 | 93644 | 50487
. .37 713298 |.51677 | 37584 | 05204 | .598558
28 724000 |.52067 | 385688 | .9P9%a | 90278
q 1051 o q* ' P n B9 7% |.5424% | .%0815 | .opses | .oolep
0 40 744463 | .56B22 | .40864 | .8Plcw 1 90009
.01 160483 | ,014169 | 01000 | .898995 | 1.00000 Al 754235 |.B6785 | .41718 | .91B04 | 08807
02 481434 | ,028936 | 02000 | .92080 | 1.00000 2 76321 | 58038 | 48771 | .21410 | .s98088
.05 652472 | ,015588 | 05000 | .982956 | 1.00000 ot3 Tyea82 | .59205 | .48828 | .91003 96766
04 762356 | .057854 | J04001 | .9998C | 1.00000 T 7816881 | .60617 | .44860 | .90897 | 984833
.08 o6e148 | LO7RE01 | .05001 [ 99976 | 1.00000 JA5 700576 |.81741 | 45952 | 80178 | .gedso
06 03ee09 | ,0867%6 | 08002 | .99a20 | 1.00000 48 790027 |.62055 | 47018 | .897150 | .poBss
O 005014 | ,10016 § 07005 | 98755 | 99900 A7 807244 |.61187 | .480838 | 89315 | .98168
.08 osepd2 | ,11857 | .08008 | .99660 | 29990 .48 815234 |.6%848 | .49161 | 83372 | .07988
.00 118509 | 182996 | .08007 | .996BB | .99988 .40 825004 |.86528 | 50236 | .88480 | .977aD
.10 159360 | .14433 | .10010 | ..8950) | .99997 «E0 g5056% |.B76898 | JB1Bl¢ | .@veel- | .gvmvy
1 200625 | 15858 | 11014 | .Pe3e8 | .90996 .51, az781s |.88852 | J5e38p | .ovace | o757
2 256060 | (17301 | .12018 | .982682 | .D9994 .52 345071 |.69996 | .55485 | 87019 | .97099
.18 272548 | Jlepss | ,13082 | .52157 | L8993l 53 gs2032 |.7112% | 545675 | .BOSEY | .ogass
.14 304458 | ,e0158 | .14028 | .28023 | .t9ded .54 856805 |.72245 | .G56689 | .96047 | .g56B45
.15 334085 | .21582 | .150B4 | .88879 | .§S984 .55 265396 |.75849 | .68788 | 85549 | .peemm
.18 61771 | .2%002 | 18042 | 09725 | .99990 .50 871608 |.74440 | .57888 | .e5044 | .o5898
A7 51738 | 22420 | 17050 | Q@581 | .99974 57 BYe0pAT  ).76617 | LBE975 | .845%2 | 95538
.18 419178 | B563%F | (18059 | .90308 | Q0067 .58 Bet11e |(.78680 | .80088 | .8¢003 | .@E1%0
.%3 435249 | .2724% | ,19070 | .38205 | 99959 50 890019 |.77628 | .6811%8 | 53486 | 04755
. 457004 | 28848 | .2008lL | .06012 { .99650 80 8pB781 |.78661 | .82514 | .BPO5Z | .pagg4
| 47850 | 50040 | 21084 | .47800 | .094359 a1 g0134% |.79679 | .63437 | .s2ql2 | .a3800
22 497557 | 51445 | .22109 | 67587 | 99986 62 906760 ].8068L | .84584 | .61865 | .53PRQ
23 516362 | 50857 | .ew¥l2a | 97376 | 99511 63 912047 |{.B1666 | 65695 | 61312 | .ee7Rl
.25 51503 | .36604 | .25160 | .06904 | .99875 .85 a22128 |.63587 | 67573 | .o0l85 | L9147
.28 Bo7086 | .38980 | .26180 | .D8864 | .P9B5E +86 028066 |.845€1 | .6911p | .7esl® | .90ME
.27 5A3762 | (38850 | .R720E | .96384 | .99620 &7 o51449 |.B5433 | Jf02r0 | 79032 | 00085
«28 599988 | 30715 | .20226 | .9681%6 | .99m0l 68 956190 |.58358 | 71428 | .7esa7 | .seRl7
»£0 slzsss | Ja1071 | .eomso | .9sear | L0978 69 | 840680 1.87215 | .7eses | Jr7eS5 | L9089
20 627500 | 42422 | .Zoev? | .9E560 | .097EE w10 044840 |[.80074 | J7avEs | .7vess | Levaocs

696 "oR HI YOV¥N
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TABLE Y. (Ooncluded)

: i % ¥ T
q loeloq q f
71 248969 -08914 «74927 76654 «868398
72 952951 | .89733 «76105 +76045 - 85303
73 956795 .90531 77288 75431 .84121
.74 960501 «91308 78470 »'74811 .82844
+75 264070 «92080 «79875 « 74186 « 81459
.76 2687500 92790 « 80877 «73555 79957
«77 970791 | .93406 «82085 72920 »78325
78 973942 94176 « 83300 « 72279 76547
«79 976951 | .94831 84521 71634 «'74608
«80 979817 «95459 _«85749 70984 .'72481
.81 982536 «9605¢2 « 88984 «'70329 70146
«82 985108 .96629 « 88226 «69670 687570
«83 0987521 | .97168 - 89475 89006 .64713
«84 989777 «976874 «80732 «68339 .61524
.85 991866 .98145 91990 .67667 57934
.86 993780 .98578 «93267 .66991 « 53846
«87 985505 .98970 94547 .66312 49118
«88 897025 « 99317 «95834 .85628 «435820
-89 298313 99612 «97130 64942 36626
«90 999326 «99845 «98484 «64252 27434
<91 999957 «999980 « 99747 .83558 11190
: 4:18 000000 [L.00000 1,00000 «83425 «00000
TABLE II
Constants entering in the computation of the con-
Jugate compressible flow for ¥ = - 1.
4 -
n=i-MS, i/n =Qteg M2 gepl | x=pc®
.05 1.001 «999 0285 «001 39,98 40,18
«10 1.005 + 995 <050 003 18,95 20.26
«15 1.011 «988 075 006 13.26 13.65
«20 1.021 980 «101 010 9.90 10.38
+25 1,033 <9681 « 127 .016 7.87 8.43
«30 1.048 «954 +154 .024 8.51 7.13
«35 1,088 « 287 181 «033 5.53 8,21
«40 1.091 «917 212 «045 4,72 5.53
«45 1.120 «828 «238 <057 4,21 5.00
«50 1.15% «866 +R68 072 3.73 4.58
«55 1.197 «836 «300 «080 3.34 4,23
<680 1.250 «800 « 333 111 3.30 3.95
.65 1.308 »760 « 369 136 2.71 3.71
70 1.400 714 «408 <167 . R.45 3.50
075 1.535 ‘651 u454 0206 2.20 3.36
80 1.667 +6Q0 +500 «250 2.00 8,17
-85 1.898 «587 « 557 +310 1.80 3.04
«80 «627 893 1,80
.95 .724 .524 1. 38
1.00 1.000 1.000 1.00

61
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